How your program syntax can look like

syntax argument specifier ,

(with or without squared brackets) (with or without squared brackets)

options

5 ' &
©
D
S~

fweight aweight pweight

namelist . iweight
local; min=#; max=#

Notes:

This list is not complete. See the pdf-manual (accessible via the "syntax" help file) for more.
Squared brackets make a phrase optional.
You can only specify up to ONE argument (but as many options as you like).

OPTion

(with or without squared brackets; specifications - if used - in
normal brackets)

options

real #

varname/varlist numeric/string; min=#; max=#; fv; ts

string asis

Using "/" after "if", "in", "using" or "weight" changes how the information is stored in the local. For expressions, specify "=/exp" instead.
You can name the options as you like (if it is local compatible), but the locals which store the input from an option are called the same as the option.

With "integer" and "real", you can specify default values (this is what # stands for).

Sometimes, it makes sense to specify "name" instead of "string": It only allows strings which could be used as names for objects such as matrices. In

other words, only one element, no special characters etc. Plus, you can specify min & max.

Example

allows the option root with an integer, otherwise

accepts no argument (there is nothing between takes the integer 2 as default, and stores the input
syntax and the comma except for if/infusing) in the local “root’

\ 4

[1H ”

in” optional, stores the phrase

[1H ”»

in local "in’ without the word “in

| |

syntax [if] [in/], RUNRning(varlist numeric) [root(in:teger 2)]

T

“if” optional, stores the phrase
in local "if” with the word “if”

A

requires the option running (abbrev. run), but only with
numeric variables, and stores the input in the local "running’

