
type options
-
varlist

min=#; max=#; fv; ts;
numeric/string/str#/strL;
generate (only for newvar*)

varname
newvarlist
newvarname
namelist local; min=#; max=#
name
anything

type options
-
if /
in /
using /
fweight aweight pweight
iweight /

=exp =/exp

type options
-
integer #
real #
numlist int; >#; >=#; <#; <=#; min=#; max=#; sort
varname/varlist numeric/string; min=#; max=#; fv; ts
name/namelist local; min=#; max=#
string asis
passthru

How your program syntax can look like

syntax argument specifier OPTion
(with or without squared brackets; specifications - if used - in
normal brackets)

(with or without squared brackets)(with or without squared brackets)

Notes:
• This list is not complete. See the pdf-manual (accessible via the "syntax" help file) for more.
• Squared brackets make a phrase optional.
• You can only specify up to ONE argument (but as many options as you like).
• Using "/" after "if", "in", "using" or "weight" changes how the information is stored in the local. For expressions, specify "=/exp" instead.
• You can name the options as you like (if it is local compatible), but the locals which store the input from an option are called the same as the option.
• With "integer" and "real", you can specify default values (this is what # stands for).
• Sometimes, it makes sense to specify "name" instead of "string": It only allows strings which could be used as names for objects such as matrices. In

other words, only one element, no special characters etc. Plus, you can specify min & max.

,

syntax [if] [in/], RUNning(varlist numeric) [root(integer 2)]

accepts no argument (there is nothing between
syntax and the comma except for if/in/using)

“if” optional, stores the phrase
in local `if’ with the word “if”

requires the option running (abbrev. run), but only with
numeric variables, and stores the input in the local `running’

allows the option root with an integer, otherwise
takes the integer 2 as default, and stores the input
in the local `root’

“in” optional, stores the phrase
in local `in’ without the word “in”

Example

